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Abstract. Chemical dynamics is the dynamics associated with the chemical re- 
arrangements of atoms to form products from reactants. Such processes are infre- 
quent but the important ones to understand are the kinetics of chemistry. Transition 
state theory provides a classical perspective with which one may focus on these rare 
but important events. Through two examples, this paper describes some of what 
can be learned with this perspective and its dynamical and quantum-mechanical 
generalizations. 

This paper outlines our recent work on the dynamical and quantum-mechanical gener- 
alizations of classical transition-state theory. The work is well described in the current 
and forthcoming literature [l-31, so this review is purposely brief. 

I deal first with classical theory. On the usual time scales of molecular dynamics, 
chemical rearrangement of atoms are rare events. Transition state theory and its gen- 
eralizations address the dynamics of such events-the infrequent transitions between 
long-lived stable or nearly stable states. For chemical reactions in liquids, the stable 
states coincide with reactant and product potential wells. The potential barrier that  
separates them is the bottleneck which makes transitions infrequent. This is because 
the probability of visiting the barrier is low. For equilibrium considerations, it is 
virtually an irrelevant region of configuration space. For the dynamics of chemical 
reactions, however, this bottleneck is of central importance; it is the transition state 
for the reaction. 

The  theory of liquid-phase chemical dynamics is therefore closely tied to  the study 
of the general barrier-crossing problem [4]. A qualitative solution to  this problem 
in its simplest classical context was developed long ago, perhaps first by Kramers 
[5]. In recent times, many advances beyond this understanding have arisen from 
the ability to  discuss specific barrier crossings through exact numerical trajectory 
calculations. Such studies are made feasible with non-Boltzmann sampling techniques 
(e.g., umbrella sampling) which can highlight infrequent or rare dynamical events [6]. 
The techniques work by examining transition states and the trajectories that  pass 
through them. Without these methods, statistically meaningful studies of infrequent 
barrier crossings in complex systems would be impossible even wit,li the most powerful 
imaginable computers. 

The precise procedures employed in these examinations are intimately related [7] 
to  transition state theory (an approximation to  the dynamics), and also to  the rigorous 
calculation of a chemical rate constant, k [7, 81. 
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One important conclusion drawn from detailed trajectory studies of chemical reac- 
tions is that solvent effects are highly system specific. Quantitative aspects including 
the general functional form of k compared with quantities like solvent pressure or den- 
sity seem to defy general descriptions. This lack of universality may be disappointing, 
but it does seem intrinsic to the nature of chemical dynamics. 

An illustration is provided by the liquid-phase chair-boat isomerization of cyclo- 
hexane. In 1979 and 1980 [9], we predicted that unimolecular processes such as iso- 
merizations in liquids will often occur in the so-called ‘energy diffusion’ regime where 
rates are accelerated by the application of solvent pressure. This acceleration was 
subsequently observed experimentally for cyclohexane [lo], though the interpretation 
remained unsettled until our recent theoretical analysis of specifically that system 
[3, 111. In these recent calculations we find that a significant fraction of trajectories 
passing over the barrier are temporarily on vague tori and are not rapidly trapped in 
the product region without the influence of the solvent. The introduction of a sol- 
vent will cool down or stabilize these activated trajectories and therefore lead to an 
enhancement of the rate. 

Transient non-chaotic behaviour of this sort can be expected in any polyatomic 
system. The detailed way in which it appears, however, will vary significantly from 
one molecule to another; and how it occurs will strongly influence, for example, the 
solvent pressure dependence of k. Specifically for cyclohexane, detailed trajectory 
calculations are in agreement with experimental observations [lo], while to date, ana- 
lytical treatments [12] based upon overly general dynamical assumptions have proved 
incorrect. 

It is worth keeping in mind that issues concerning classical dynamics are of a de- 
tailed quantitative nature. The statistical transition-state theory is already a nearly 
complete story if one is simply interested in the absolute value of the rate constant. 
Information of a more detailed nature involving the specific dynamical pathways is ac- 
cessed through the interpretation of experiments like those which measure the pressure 
dependence of the rates. 

I now turn to  quantum theory. In the quantum realm, something more comes 
into play. The positions of particles can never be certain and focusing attention on 
one precise configuration, such as a transition state, cannot be totally correct. Nev- 
ertheless, Voth, Miller and I have been able to derive a quantum-mechanical gener- 
alization of the transition-state-theory perspective [l]. Like its classical counterpart, 
the new theory provides a reasonable means of estimating rate constants from en- 
tirely statistical considerations. Further, like its classical counterpart, this quantum 
transition-state theory provides the basis for importance sampling with which exact 
quantum-dynamical calculations are now feasible. 

How is this done? We begin with a suggestion from Gillan [13]: Rather than 
consider particle positions, focus instead on the centroid of Feynman’s imaginary 
time quantum paths. Gillan noted that by computing the reversible work to move 
this centroid from a stable state to a bottleneck, one has, in effect, determined the 
activation free energy for a barrier crossing which includes the instanton or WKB 
tunnelling factor [14]. Hence, the probability distribution for the reaction coordinate 
centroid appears to  be the appropriate quantum-mechanical version of the Arrhenius 
exponential factor. 

One may make this appearance more vivid with explicit model calculations. In- 
cluded among such calculations, we have arrived at a corrected version of Wolynes’s 
[15] quantum-mechanical Grote-Hynes theory [16]. These theories describe barrier 
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crossing in terms of a linear model-an inverted parabolic barrier with linear cou- 
pling to  a stable harmonic bath. Our version is distinguished from earlier work on 
this model in that it provides a variational procedure which avoids the unphysical 
divergences present in the straightforward quantum-mechanical treatment. Ours also 
provides a means of estimating the parameters to be used when applying the harmonic 
model to  anharmonic systems. For further developments along these lines, see [23]. 

A stationary phase argument provides a rationale for why the centroid is the 
appropriate quantity to consider. This argument leads naturally to an important 
formal result-a rigorous and computationally feasible algorithm for computing rate 
constants for quantum systems. 

Figure 1. A transition state from the simulated aqueous Fe2+-Fe3+ electron t rans  
fer. The centroid of the electron path is midway between the two irons. The two 
larger dark circles are the irons 5.5 A apart, and the jagged lines connecting them 
are one path of the resonating electron. The Feynman paths of the quantized water 
molecules show the librations. Only a few of the hundreds of simulated waters are 
depicted. Those drawn with darker shade are the nearest neighbour ligands, each 
iron being six-fold coordinated. 

The aqueous ferrous-ferric electron transfer provides an illustration of this ap- 
proach. In the electron transfer process, the electron tunnels between the two iron 
ions. As delineated by Marcus [17], the transfer is made possible by rearrangements 
of the surrounding water molecules. Specifically how these rearrangements occur can 
be discerned by detailed calculations, those of the type we have carried out consider- 
ing two iron ions, an electron and hundreds of water molecules [2, 181. In particular, 
we have analysed the reversible work necessary to move the electron path centroid 
from one iron to  the midpoint between the two. With the electron centroid at  the 
midpoint, a resonant state has been prepared where the electron tunnels between the 
two redox sites. (For an asymmetric system, the transition state would be located 
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with the centroid displaced from the midpoint.) Notice that in this procedure [19], 
the electron’s position plays the role of the reaction coordinate-a perspective that 
might be contrasted with the classical description of electron transfer [17]. In the 
limit of the small electron-tunnelling amplitude, the centroid method referred to  here 
is closely related to  the stationary-phase imaginary-time evaluation of the golden rule 
approximation to  the rate constant [20]. 

In doing this, we have discovered something quite remarkable about the dominant 
pathways to  electron transfer: Not only does the electron tunnel; liquid water tunnels 
too. Without classically forbidden nuclear configurations, electron transfer in water 
would occur a t  a rate two orders of magnitude slower than it actually does. There 
is also a significant isotope effect in changing the solvent from H,O to D,O, and our 
theoretical calculations are in agreement with experimental observations of this effect. 
The water motions involved in the tunnelling are librations-collective librations of 
hundreds of water molecules, the same fast motions responsible for the rapid time 
scales for hydrating electrons [al l ,  and the same motions that quickly accommodate 
photochemically induced non-equilibrium charge distributions [22]. Figure 1 taken 
from a representative transition-state configuration in our Monte Carlo runs illustrates 
these motions. 
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